ﻻ يوجد ملخص باللغة العربية
Estimates of the generalization error are proved for a residual neural network with $L$ random Fourier features layers $bar z_{ell+1}=bar z_ell + mathrm{Re}sum_{k=1}^Kbar b_{ell k}e^{mathrm{i}omega_{ell k}bar z_ell}+ mathrm{Re}sum_{k=1}^Kbar c_{ell k}e^{mathrm{i}omega_{ell k}cdot x}$. An optimal distribution for the frequencies $(omega_{ell k},omega_{ell k})$ of the random Fourier features $e^{mathrm{i}omega_{ell k}bar z_ell}$ and $e^{mathrm{i}omega_{ell k}cdot x}$ is derived. This derivation is based on the corresponding generalization error for the approximation of the function values $f(x)$. The generalization error turns out to be smaller than the estimate ${|hat f|^2_{L^1(mathbb{R}^d)}}/{(KL)}$ of the generalization error for random Fourier features with one hidden layer and the same total number of nodes $KL$, in the case the $L^infty$-norm of $f$ is much less than the $L^1$-norm of its Fourier transform $hat f$. This understanding of an optimal distribution for random features is used to construct a new training method for a deep residual network. Promising performance of the proposed new algorithm is demonstrated in computational experiments.
Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical rel
This paper analyzes the generalization error of two-layer neural networks for computing the ground state of the Schrodinger operator on a $d$-dimensional hypercube. We prove that the convergence rate of the generalization error is independent of the
This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold fo
We study gradient-based regularization methods for neural networks. We mainly focus on two regularization methods: the total variation and the Tikhonov regularization. Applying these methods is equivalent to using neural networks to solve some partia
We consider the optimization problem associated with fitting two-layer ReLU networks with $k$ hidden neurons, where labels are assumed to be generated by a (teacher) neural network. We leverage the rich symmetry exhibited by such models to identify v