ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the scattering theory for a one-dimensional quantum walk with impurities which make reflections and transmissions. We focus on an explicit expression of the scattering operator. Our construction of the formula is based on the counting paths of quantum walkers. The Fourier transform of the scattering operator gives an explicit formula of the scattering matrix which is deeply related with the resonant-tunneling for quantum walks.
In this paper, we consider the quantum walk on $mathbb{Z}$ with attachment of one-length path periodically. This small modification to $mathbb{Z}$ provides localization of the quantum walk. The eigenspace causing this localization is generated by fin
Staggered quantum walks on graphs are based on the concept of graph tessellation and generalize some well-known discrete-time quantum walk models. In this work, we address the class of 2-tessellable quantum walks with the goal of obtaining an eigenba
In quantum mechanics textbooks the momentum operator is defined in the Cartesian coordinates and rarely the form of the momentum operator in spherical polar coordinates is discussed. Consequently one always generalizes the Cartesian prescription to o
We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linea
We introduce an analytically treatable spin decoherence model for quantum walk on a line that yields the exact position probability distribution of an unbiased classical random walk at all-time scales. This spin decoherence model depicts a quantum ch