ﻻ يوجد ملخص باللغة العربية
We introduce an analytically treatable spin decoherence model for quantum walk on a line that yields the exact position probability distribution of an unbiased classical random walk at all-time scales. This spin decoherence model depicts a quantum channel in which simultaneous bit and phase flip operator is applied at random on the coin state. Based on this result we claim that there exist certain quantum channels that can produce exact classical statistical properties for a given one-dimensional quantum walk. Moreover, from the perspective of quantum computing, decoherence model introduced in this study may have useful algorithmic applications when it is applied on quantum walks with non-local initial states.
We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast to the classical random walk there is no connection between the behaviour of persistence and the scaling of variance. In particular, we find
Evolution operators of certain quantum walks possess, apart from the continuous part, also point spectrum. The existence of eigenvalues and the corresponding stationary states lead to partial trapping of the walker in the vicinity of the origin. We a
We consider the Grover walk on infinite trees from the view point of spectral analysis. From the previous works, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk,
We study the effect of noise on the transport of a quantum state from a closed loop of $n-$sites with one of the sites as a sink. Using a discrete-time quantum walk dynamics, we demonstrate that the transport efficiency can be enhanced with noise whe
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled with lattices that contain static defects which reverse the walkers direction. We implement a dephasing process after each step