ﻻ يوجد ملخص باللغة العربية
Staggered quantum walks on graphs are based on the concept of graph tessellation and generalize some well-known discrete-time quantum walk models. In this work, we address the class of 2-tessellable quantum walks with the goal of obtaining an eigenbasis of the evolution operator. By interpreting the evolution operator as a quantum Markov chain on an underlying multigraph, we define the concept of quantum detailed balance, which helps to obtain the eigenbasis. A subset of the eigenvectors is obtained from the eigenvectors of the double discriminant matrix of the quantum Markov chain. To obtain the remaining eigenvectors, we have to use the quantum detailed balance conditions. If the quantum Markov chain has a quantum detailed balance, there is an eigenvector for each fundamental cycle of the underlying multigraph. If the quantum Markov chain does not have a quantum detailed balance, we have to use two fundamental cycles linked by a path in order to find the remaining eigenvectors. We exemplify the process of obtaining the eigenbasis of the evolution operator using the kagome lattice (the line graph of the hexagonal lattice), which has symmetry properties that help in the calculation process.
In this paper, we consider the scattering theory for a one-dimensional quantum walk with impurities which make reflections and transmissions. We focus on an explicit expression of the scattering operator. Our construction of the formula is based on t
We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operato
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or mov
Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full-revival of its quantum state. Localization for two dimensional quantum walks is