ﻻ يوجد ملخص باللغة العربية
Recent years have seen a huge development in spatial modelling and prediction methodology, driven by the increased availability of remote-sensing data and the reduced cost of distributed-processing technology. It is well known that modelling and prediction using infinite-dimensional process models is not possible with large data sets, and that both approximate models and, often, approximate-inference methods, are needed. The problem of fitting simple global spatial models to large data sets has been solved through the likes of multi-resolution approximations and nearest-neighbour techniques. Here we tackle the next challenge, that of fitting complex, nonstationary, multi-scale models to large data sets. We propose doing this through the use of superpositions of spatial processes with increasing spatial scale and increasing degrees of nonstationarity. Computation is facilitated through the use of Gaussian Markov random fields and parallel Markov chain Monte Carlo based on graph colouring. The resulting model allows for both distributed computing and distributed data. Importantly, it provides opportunities for genuine model and data scaleability and yet is still able to borrow strength across large spatial scales. We illustrate a two-scale version on a data set of sea-surface temperature containing on the order of one million observations, and compare our approach to state-of-the-art spatial modelling and prediction methods.
In recent years dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However it is often computationally unfeasible to apply exact statistical methodologies in the context of large datasets a
Bayes additive regression trees(BART) is a nonparametric regression model which has gained wide -spread popularity in recent years due to its flexibility and high accuracy of estimation .In spatio-temporal related model,the spatio or temporal variabl
Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential echniques cannot be used. In
Let $V$ be a finite set of indices, and let $B_i$, $i=1,ldots,m$, be subsets of $V$ such that $V=bigcup_{i=1}^{m}B_i$. Let $X_i$, $iin V$, be independent random variables, and let $X_{B_i}=(X_j)_{jin B_i}$. In this paper, we propose a recursive compu
Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educatio