ترغب بنشر مسار تعليمي؟ اضغط هنا

ProcData: An R Package for Process Data Analysis

168   0   0.0 ( 0 )
 نشر من قبل Xueying Tang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by utilizing the rich information contained in response processes. The R package ProcData presented in this article is designed to provide tools for processing, describing, and analyzing process data. We define an S3 class proc for organizing process data and extend generic methods summary and print for class proc. Two feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors. ProcData also provides functions for fitting and making predictions from a neural-network-based sequence model. These functions call relevant functions in package keras for constructing and training neural networks. In addition, several response process generators and a real dataset of response processes of the climate control item in the 2012 Programme for International Student Assessment are included in the package.



قيم البحث

اقرأ أيضاً

We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs, and nonseparable and/or nonstationary covariance structures can be modeled. In addition, the package fits functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure is modeled by a GPR model. In this paper, we present the versatility of GPFDA with respect to mean function and covariance function specifications and illustrate the implementation of estimation and prediction of some models through reproducible numerical examples.
125 - Saeid Amiri 2017
R is a programming language and environment that is a central tool in the applied sciences for writing program. Its impact on the development of modern statistics is inevitable. Current research, especially for big data may not be done solely using R and will likely use different programming languages; hence, having a modern integrated development environment (IDE) is very important. Atom editor is modern IDE that is developed by GitHub, it is described as A hackable text editor for the 21st Century. This report is intended to present a package deployed entitled Rbox that allows Atom Editor to write and run codes professionally in R.
The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives ba sed on series approximations to the nonparametric part of the model. It also provides pointwise and uniform confidence intervals over a region of covariate values and/or quantile indices for the same functions using analytical and resampling methods. This paper serves as an introduction to the package and displays basic functionality of the functions contained within.
This paper introduces the R package sgmcmc; which can be used for Bayesian inference on problems with large datasets using stochastic gradient Markov chain Monte Carlo (SGMCMC). Traditional Markov chain Monte Carlo (MCMC) methods, such as Metropolis- Hastings, are known to run prohibitively slowly as the dataset size increases. SGMCMC solves this issue by only using a subset of data at each iteration. SGMCMC requires calculating gradients of the log likelihood and log priors, which can be time consuming and error prone to perform by hand. The sgmcmc package calculates these gradients itself using automatic differentiation, making the implementation of these methods much easier. To do this, the package uses the software library TensorFlow, which has a variety of statistical distributions and mathematical operations as standard, meaning a wide class of models can be built using this framework. SGMCMC has become widely adopted in the machine learning literature, but less so in the statistics community. We believe this may be partly due to lack of software; this package aims to bridge this gap.
This paper is dedicated to the R package FMM which implements a novel approach to describe rhythmic patterns in oscillatory signals. The frequency modulated Mobius (FMM) model is defined as a parametric signal plus a gaussian noise, where the signal can be described as a single or a sum of waves. The FMM approach is flexible enough to describe a great variety of rhythmic patterns. The FMM package includes all required functions to fit and explore single and multi-wave FMM models, as well as a restricted version that allows equality constraints between parameters representing a priori knowledge about the shape to be included. Moreover, the FMM package can generate synthetic data and visualize the results of the fitting process. The potential of this methodology is illustrated with examples of such biological oscillations as the circadian rhythm in gene expression, the electrical activity of the heartbeat and neuronal activity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا