ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Approximate Bayesian Computation for discretely observed Markov models using a factorised posterior distribution

256   0   0.0 ( 0 )
 نشر من قبل Theodore Kypraios
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential echniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior. We propose a new piecewise ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior less approximate. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach for three examples; in each case, the approach enables exact matching between simulations and data and offers fast and accurate inference.



قيم البحث

اقرأ أيضاً

In recent years dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However it is often computationally unfeasible to apply exact statistical methodologies in the context of large datasets a nd complex models. This paper considers a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An Approximate Bayesian Computation (ABC) MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm uses simulations of subsamples from the assumed data generating model as well as a so-called early rejection strategy to speed up computations in the ABC-MCMC sampler. Using a considerate amount of subsamples does not seem to degrade the quality of the inferential results for the considered applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered setup. Finally the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general and not limited to the exemplified model and data.
214 - Umberto Picchini 2012
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode l e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when usi ng this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin g approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo (SMC) methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
227 - K. L. Mengersen 2012
Approximate Bayesian computation (ABC) has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provid es another route to such settings that bypasses simulations from the model and the choices of the ABC parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The BCel algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا