ﻻ يوجد ملخص باللغة العربية
Let $V$ be a finite set of indices, and let $B_i$, $i=1,ldots,m$, be subsets of $V$ such that $V=bigcup_{i=1}^{m}B_i$. Let $X_i$, $iin V$, be independent random variables, and let $X_{B_i}=(X_j)_{jin B_i}$. In this paper, we propose a recursive computation method to calculate the conditional expectation $Ebigl[prod_{i=1}^mchi_i(X_{B_i}) ,|, Nbigr]$ with $N=sum_{iin V}X_i$ given, where $chi_i$ is an arbitrary function. Our method is based on the recursive summation/integration technique using the Markov property in statistics. To extract the Markov property, we define an undirected graph whose cliques are $B_j$, and obtain its chordal extension, from which we present the expressions of the recursive formula. This methodology works for a class of distributions including the Poisson distribution (that is, the conditional distribution is the multinomial). This problem is motivated from the evaluation of the multiplicity-adjusted $p$-value of scan statistics in spatial epidemiology. As an illustration of the approach, we present the real data analyses to detect temporal and spatial clustering.
Approximate Bayesian computation (ABC) or likelihood-free inference algorithms are used to find approximations to posterior distributions without making explicit use of the likelihood function, depending instead on simulation of sample data sets from
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the co
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when usi
In this paper, we show how a complete and exact Bayesian analysis of a parametric mixture model is possible in some cases when components of the mixture are taken from exponential families and when conjugate priors are used. This restricted set-up al
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti