ﻻ يوجد ملخص باللغة العربية
Incentive compatibility (IC) is one of the most fundamental properties of an auction mechanism, including those used for online advertising. Recent methods by Feng et al. and Lahaie et al. show that counterfactual runs of the auction mechanism with different bids can be used to determine whether an auction is IC. In this paper we show that a similar result can be obtained by looking at the advertisers envy, which can be computed with one single execution of the auction. We introduce two metrics to evaluate the incentive-compatibility of an auction: IC-Regret and IC-Envy. For position auction environments, we show that for a large class of pricing schemes (which includes e.g. VCG and GSP), IC-Envy $ge$ IC-Regret (and IC-Envy = IC-Regret when bids are distinct). We consider non-separable discounts in the Ad Types environment of Colini-Baldeschi et al. where we show that for a generalization of GSP also IC-Envy $ge$ IC-Regret. Our final theoretical result is that in all these settings IC-Envy be used to bound the loss in social welfare due advertiser misreports. Finally, we show that IC-Envy is useful as a feature to predict IC-Regret in auction environments beyond the ones for which we show theoretical results. In particular, using IC-Envy yields better results than training models using only price and value features.
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC
We consider an environment where sellers compete over buyers. All sellers are a-priori identical and strategically signal buyers about the product they sell. In a setting motivated by on-line advertising in display ad exchanges, where firms use secon
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
Approximating the optimal social welfare while preserving truthfulness is a well studied problem in algorithmic mechanism design. Assuming that the social welfare of a given mechanism design problem can be optimized by an integer program whose integr