ﻻ يوجد ملخص باللغة العربية
Approximating the optimal social welfare while preserving truthfulness is a well studied problem in algorithmic mechanism design. Assuming that the social welfare of a given mechanism design problem can be optimized by an integer program whose integrality gap is at most $alpha$, Lavi and Swamy~cite{Lavi11} propose a general approach to designing a randomized $alpha$-approximation mechanism which is truthful in expectation. Their method is based on decomposing an optimal solution for the relaxed linear program into a convex combination of integer solutions. Unfortunately, Lavi and Swamys decomposition technique relies heavily on the ellipsoid method, which is notorious for its poor practical performance. To overcome this problem, we present an alternative decomposition technique which yields an $alpha(1 + epsilon)$ approximation and only requires a quadratic number of calls to an integrality gap verifier.
Incentive compatibility (IC) is one of the most fundamental properties of an auction mechanism, including those used for online advertising. Recent methods by Feng et al. and Lahaie et al. show that counterfactual runs of the auction mechanism with d
We consider an environment where sellers compete over buyers. All sellers are a-priori identical and strategically signal buyers about the product they sell. In a setting motivated by on-line advertising in display ad exchanges, where firms use secon
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
We study a participatory budgeting problem of aggregating the preferences of agents and dividing a budget over the projects. A budget division solution is a probability distribution over the projects. The main purpose of our study concerns the compar