ﻻ يوجد ملخص باللغة العربية
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairness and efficiency, defined as the weighted geometric mean of agents valuations. For the symmetric additive case of the problem, where agents have the same weight with additive valuations, the first constant-factor approximation algorithm was obtained in 2015. This led to a flurry of work obtaining constant-factor approximation algorithms for the symmetric case under mild generalizations of additive, and $O(n)$-approximation algorithms for more general valuations and for the asymmetric case. In this paper, we make significant progress towards both symmetric and asymmetric NSW problems. We present the first constant-factor approximation algorithm for the symmetric case under Rado valuations. Rado valuations form a general class of valuation functions that arise from maximum cost independent matching problems, including as special cases assignment (OXS) valuations and weighted matroid rank functions. Furthermore, our approach also gives the first constant-factor approximation algorithm for the asymmetric case under Rado valuations, provided that the maximum ratio between the weights is bounded by a constant.
Recently Cole and Gkatzelis gave the first constant factor approximation algorithm for the problem of allocating indivisible items to agents, under additive valuations, so as to maximize the Nash Social Welfare. We give constant factor algorithms for
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a
We develop polynomial-time algorithms for the fair and efficient allocation of indivisible goods among $n$ agents that have subadditive valuations over the goods. We first consider the Nash social welfare as our objective and design a polynomial-time
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC