ﻻ يوجد ملخص باللغة العربية
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a sequence of $T$ periods and the value of each agent for a good is adversarially chosen when the good arrives. We first observe that no online algorithm can achieve a competitive ratio better than the trivial $O(N)$, unless it is given additional information about the agents values. Then, in line with the emerging area of algorithms with predictions, we consider a setting where for each agent, the online algorithm is only given a prediction of her monopolist utility, i.e., her utility if all goods were given to her alone (corresponding to the sum of her values over the $T$ periods). Our main result is an online algorithm whose competitive ratio is parameterized by the multiplicative errors in these predictions. The algorithm achieves a competitive ratio of $O(log N)$ and $O(log T)$ if the predictions are perfectly accurate. Moreover, the competitive ratio degrades smoothly with the errors in the predictions, and is surprisingly robust: the logarithmic competitive ratio holds even if the predictions are very inaccurate. We complement this positive result by showing that our bounds are essentially tight: no online algorithm, even if provided with perfectly accurate predictions, can achieve a competitive ratio of $O(log^{1-epsilon} N)$ or $O(log^{1-epsilon} T)$ for any constant $epsilon>0$.
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC
Recently Cole and Gkatzelis gave the first constant factor approximation algorithm for the problem of allocating indivisible items to agents, under additive valuations, so as to maximize the Nash Social Welfare. We give constant factor algorithms for
Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample pr
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a