ﻻ يوجد ملخص باللغة العربية
When estimating the phase of a single mode, the quantum Fisher information for a pure probe state is proportional to the photon number variance of the probe state. In this work, we point out particular states that offer photon number distributions exhibiting a large variance, which would help to improve the local estimation precision. These theoretical examples are expected to stimulate the community to put more attention to those states that we found, and to work towards their experimental realization and usage in quantum metrology.
We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We appl
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $sqrt{N}$ enhancement in phase sensitivity compar
Squeezed-state interferometry plays an important role in quantum-enhanced optical phase estimation, as it allows the estimation precision to be improved up to the Heisenberg limit by using ideal photon-number-resolving detectors at the output ports.
We investigate two special classes of two-mode Gaussian states of light that are important from both the experimental and theoretical points of view: the mode-mixed thermal states and the squeezed thermal ones. Aiming to a parallel study, we write th
We derive criterion in the form of inequality based on quantum Fisher information and quantum variance to detect multipartite entanglement. It can be regarded as complementary of the well-established PPT criterion in the sense that it can also detect