ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum parameter estimation using general single-mode Gaussian states

133   0   0.0 ( 0 )
 نشر من قبل Pu Jian
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.



قيم البحث

اقرأ أيضاً

212 - Olivier Pinel 2010
Multimode Gaussian quantum light, including multimode squeezed and/or multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications to quantum information processing and metrology involving conti nuous variables. In this paper, we determine the ultimate sensitivity in the estimation of any parameter when the information about this parameter is encoded in such Gaussian light, irrespective of the exact information extraction protocol used in the estimation. We then show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity is to put the most squeezed state available in a well-defined light mode. This implies that it is not possible to take advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement between different modes. We show that an appropriate homodyne detection scheme allows us to reach this Cramr-Rao bound. We apply finally these considerations to the problem of optimal phase estimation using interferometric techniques.
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial infor mation about the parameter value is available, e.g., when few measurements are performed. Here, we consider three paradigmatic estimation schemes in continuous-variable quantum metrology (estimation of displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective. For each of these scenarios, we investigate the precision achievable with single-mode Gaussian states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation strategies that combine good performance with the potential for straightforward experimental realization in terms of Gaussian states and measurements. Our results provide practical solutions for reaching uncertainties where local estimation techniques apply, thus bridging the gap to regimes where asymptotically optimal strategies can be employed.
We propose a machine learning framework for parameter estimation of single mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement an d squeezing parameter estimation, this is achieved by introducing Expectation-Maximization (EM) based algorithms, while for phase parameter estimation an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of Genie Aided Bayesian estimators, that assume perfect knowledge of the prior parameters. Our proposed methods can be utilized by experimentalists to find the optimum Bayesian estimate of parameters of Gaussian quantum states by using only the observed measurements without requiring any knowledge about the prior distribution parameters.
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multi-system interactions. For a Hamiltonian with $k$-system parameter-sensitive terms, the quantum limit scales as $1/N^k$ where $N$ is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter independent interaction among the systems and when adaptive measurements via parameter-independent coupling to ancillas are allowed.
201 - Yang Gao , Hwang Lee 2014
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We com pute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا