ﻻ يوجد ملخص باللغة العربية
We investigate two special classes of two-mode Gaussian states of light that are important from both the experimental and theoretical points of view: the mode-mixed thermal states and the squeezed thermal ones. Aiming to a parallel study, we write the Uhlmann fidelity between pairs of states belonging to each class in terms of their defining parameters. The quantum Fisher information matrices on the corresponding four-dimensional manifolds are diagonal and allow insightful parameter estimation. The scalar curvatures of the Bures metric on both Riemannian manifolds of special two-mode Gaussian states are evaluated and discussed. They are functions of two variables, namely, the mean numbers of photons in the incident thermal modes. Our comparative analysis opens the door to further investigation of the interplay between geometry and statistics for Gaussian states produced in simple optical devices.
A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy
Singularity or negativity of Glauber P-function is a widespread notion of nonclassicality, with important implications in quantum optics and with the character of an irreducible resource. Here we explore how P-nonclassicality may be generated by cond
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine pr
We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states (where initial single mode compression is $z_0$) provided the
We investigate the separability of the two-mode Gaussian states by using the variances of a pair of Einstein-Podolsky-Rosen (EPR)-like observables. Our starting point is inspired by the general necessary condition of separability introduced by Duan {