ﻻ يوجد ملخص باللغة العربية
We derive criterion in the form of inequality based on quantum Fisher information and quantum variance to detect multipartite entanglement. It can be regarded as complementary of the well-established PPT criterion in the sense that it can also detect bound entangled states. The inequality is motivated by Y.Akbari-Kourbolagh $et al.$[Phys. Rev A. 99, 012304 (2019)] which introduced a multipartite entanglement criterion based on quantum Fisher information. Our criterion is experimentally measurable for detecting any $N$-qudit pure state mixed with white noisy. We take several examples to illustrate that our criterion has good performance for detecting certain entangled states.
Genuine multipartite entanglement plays important roles in quantum information processing. The detection of genuine multipartite entanglement has been long time a challenging problem in the theory of quantum entanglement. We propose a criterion for d
Fragile quantum features such as entanglement are employed to improve the precision of parameter estimation and as a consequence the quantum gain becomes vulnerable to noise. As an established tool to subdue noise, quantum error correction is unfortu
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
We present a necessary and sufficient condition for the separability of multipartite quantum states, this criterion also tells us how to write a multipartite separable state as a convex sum of separable pure states. To work out this criterion, we nee
In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cram{e}r-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimatio