ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection and timing of gamma-ray pulsations from the $707$ Hz pulsar J0952$-$0607

66   0   0.0 ( 0 )
 نشر من قبل Lars Nieder
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Low-Frequency Array radio telescope discovered the $707$ Hz binary millisecond pulsar (MSP) J0952$-$0607 in a targeted radio pulsation search of an unidentified $textit{Fermi}$ gamma-ray source. This source shows a weak energy flux of $F_gamma = 2.6 times 10^{-12},text{erg},text{cm}^{-2},text{s}^{-1}$ in the energy range between $100,text{MeV}$ and $100,text{GeV}$. Here we report the detection of pulsed gamma-ray emission from PSR$,$J0952$-$0607 in a very sensitive gamma-ray pulsation search. The pulsars rotational, binary, and astrometric properties are measured over seven years of $textit{Fermi}$-Large Area Telescope data. For this we take into account the uncertainty on the shape of the gamma-ray pulse profile. We present an updated radio-timing solution now spanning more than two years and show results from optical modeling of the black-widow-type companion based on new multi-band photometric data taken with HiPERCAM on the Gran Telescopio Canarias on La Palma and ULTRACAM on the New Technology Telescope at ESO La Silla. PSR$,$J0952$-$0607 is now the fastest-spinning pulsar for which the intrinsic spin-down rate has been reliably constrained ($dot{P}_text{int} lesssim 4.6 times 10^{-21},text{s},text{s}^{-1}$). The inferred surface magnetic field strength of $B_text{surf} lesssim 8.2 times 10^{7},text{G}$ is among the ten lowest of all known pulsars. This discovery is another example of an extremely fast spinning black-widow pulsar hiding within an unidentified $textit{Fermi} gamma-ray source. In the future such systems might help to pin down the maximum spin frequency and the minimum surface magnetic field strength of MSPs.



قيم البحث

اقرأ أيضاً

100 - Wynn C.G. Ho 2019
With a spin frequency of 707 Hz, PSR J0952-0607 is the second fastest spinning pulsar known. It was discovered in radio by LOFAR in 2017 at an estimated distance of either 0.97 or 1.74 kpc and has a low-mass companion with a 6.42 hr orbital period. W e report discovery of the X-ray counterpart of PSR J0952-0607 using XMM-Newton. The X-ray spectra can be well-fit by a single power law model (Gamma = 2.5) or by a thermal plus power law model (kTeff = 40 eV and Gamma = 1.4). We do not detect evidence of variability, such as that due to orbital modulation from pulsar wind and companion star interaction. Because of its fast spin rate, PSR J0952-0607 is a crucial source for understanding the r-mode instability, which can be an effective mechanism for producing gravitational waves. Using the high end of our measured surface temperature, we infer a neutron star core temperature of ~10^7 K, which places PSR J0952-0607 within the window for the r-mode to be unstable unless an effect such as superfluid mutual friction damps the fluid oscillation. The measured luminosity limits the dimensionless r-mode amplitude to be less than ~1x10^-9.
The predicted nature of the candidate redback pulsar 3FGL,J2039.6$-$5618 was recently confirmed by the discovery of $gamma$-ray millisecond pulsations (Clark et al. 2020, hereafter Paper,I), which identify this $gamma$-ray source as msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4,GHz and 3.1,GHz, at the 2.6ms period discovered in $gamma$-rays, and also at 0.7,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main $gamma$-ray peak. At 1.4,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of $24.57pm0.03$,pc,cm$^{-3}$ we derive a pulsar distance of $0.9pm 0.2$,kpc or $1.7pm0.7$,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and $gamma$-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper,I.
Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and t he contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.
Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such recycled rotation-powered pulsars have been detected by their spin-modu lated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energie s, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا