ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio pulsations from the $gamma$-ray millisecond pulsar PSR J2039-5617

303   0   0.0 ( 0 )
 نشر من قبل Alessandro Corongiu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The predicted nature of the candidate redback pulsar 3FGL,J2039.6$-$5618 was recently confirmed by the discovery of $gamma$-ray millisecond pulsations (Clark et al. 2020, hereafter Paper,I), which identify this $gamma$-ray source as msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4,GHz and 3.1,GHz, at the 2.6ms period discovered in $gamma$-rays, and also at 0.7,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main $gamma$-ray peak. At 1.4,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of $24.57pm0.03$,pc,cm$^{-3}$ we derive a pulsar distance of $0.9pm 0.2$,kpc or $1.7pm0.7$,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and $gamma$-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper,I.



قيم البحث

اقرأ أيضاً

The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6$-$5618 contains a periodic optical and X-ray source that was predicted to be a redback millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039$-$5617. Optical light curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination $i > 60{deg}$, for a low pulsar mass between $1.1 M_{odot} < M_{rm psr} < 1.6 M_{odot}$ and a companion mass of 0.15--0.22 $M_{odot}$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find that the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion stars optical photon field.
Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such recycled rotation-powered pulsars have been detected by their spin-modu lated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
216 - F. Camilo , M. Kerr , P. S. Ray 2015
In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported in Kerr et al. (2012). We did not detect radio pulsations from another six pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets done to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs, and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in >1 d circular orbits with 0.2-0.3 Msun presumed white dwarf companions. PSR J0955-6150, in a 24 d orbit with a ~0.25 Msun companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036-8317 is in an 8 hr binary with a >0.14 Msun companion that is probably a white dwarf. PSR J1946-5403 is in a 3 hr orbit with a >0.02 Msun companion with no evidence of radio eclipses.
Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and t he contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.
We present X-ray observations of the redback eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variabil ity as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $gamma$-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied $gamma$-ray luminosity is $lesssim$5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient $gamma$-ray producing millisecond pulsars or, if the detection is spurious, the $gamma$-ray emission pattern is not directed towards us.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا