ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Gamma-Ray Emission from the Vela Pulsar Wind Nebula with AGILE

263   0   0.0 ( 0 )
 نشر من قبل Paolo Esposito Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energies, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.



قيم البحث

اقرأ أيضاً

The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Ne bula due to their morphological similarities. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), although not detected, with an upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function dphi/dE=f_0(E/1TeV)^{-Gamma} with f_0=(2.0pm0.4_{stat}pm0.6_{sys})times10^{-13}cm^{-2}s^{-1}TeV^{-1} and Gamma=2.4pm0.2_{stat}pm0.2_{sys}. The skymap is compatible with an unresolved source. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density according to GALPROP, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires an unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N157B is associated with PSRJ0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 pm 0.2(stat) pm 0.3(syst) and a normalisation at 1 TeV of (8.2 pm 0.8(stat) pm 2.5(syst)) times 10^-13 cm^-2s^-1TeV^-1. A leptonic multi-wavelength model shows that an energy of about 4 times 10^49erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsars spindown luminosity, 0.08% pm 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsars favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsars birth period is estimated to be shorter than 10 ms.
Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SN R W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The C rab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1 $pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in the energy range of 60--160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.0$^o$ $pm$0.1$^o$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا