ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray pulsations from the radio-quiet gamma-ray pulsar in CTA 1

124   0   0.0 ( 0 )
 نشر من قبل Andrea De Luca
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.



قيم البحث

اقرأ أيضاً

The predicted nature of the candidate redback pulsar 3FGL,J2039.6$-$5618 was recently confirmed by the discovery of $gamma$-ray millisecond pulsations (Clark et al. 2020, hereafter Paper,I), which identify this $gamma$-ray source as msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4,GHz and 3.1,GHz, at the 2.6ms period discovered in $gamma$-rays, and also at 0.7,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main $gamma$-ray peak. At 1.4,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of $24.57pm0.03$,pc,cm$^{-3}$ we derive a pulsar distance of $0.9pm 0.2$,kpc or $1.7pm0.7$,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and $gamma$-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper,I.
We have analyzed the new deep {it XMM-Newton} and {it Chandra} observations of the energetic radio-quiet pulsar J1813$-$1246. The X-ray spectrum is non-thermal, very hard and absorbed. Based on spectral considerations, we propose that J1813 is locate d at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available {it Fermi} ephemeris to five years. We found two glitches. The $gamma$-ray lightcurve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardenning towards the bridge. The X-ray peaks lag the $gamma$-ray ones by 0.25 in phase. We found a hint of detection in the 30-500 keV band with {it INTEGRAL} IBIS/ISGRI, that is consistent with the extrapolation of both the soft X-ray and $gamma$-ray emission of J1813. The peculiar X and $gamma$-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.
We report the discovery and timing measurements of PSR J1208-6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a bli nd-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home. No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 $mu$Jy. By timing this pulsars gamma-ray pulsations, we measure its braking index over five years of LAT observations to be $n = 2.598 pm 0.001 pm 0.1$, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2,700 yr, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsars inferred dipolar surface magnetic field strength is $3.8 times 10^{13}$ G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.
Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.
We report on observations of the unusual neutron-star binary system FIRST J102347.6+003841 carried out using the XMM-Newton satellite. This system consists of a radio millisecond pulsar in an 0.198-day orbit with a ~0.2 solar-mass Roche-lobe-filling companion, and appears to have had an accretion disk in 2001. We observe a hard power-law spectrum (Gamma = 1.26(4)) with a possible thermal component, and orbital variability in X-ray flux and possibly hardness of the X-rays. We also detect probable pulsations at the pulsar period (single-trial significance ~4.5 sigma from an 11(2)% modulation), which would make this the first system in which both orbital and rotational X-ray pulsations are detected. We interpret the emission as a combination of X-rays from the pulsar itself and from a shock where material overflowing the companion meets the pulsar wind. The similarity of this X-ray emission to that seen from other millisecond pulsar binary systems, in particular 47 Tuc W (PSR J0024-7204W) and PSR J1740-5340, suggests that they may also undergo disk episodes similar to that seen in J1023 in 2001.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا