ﻻ يوجد ملخص باللغة العربية
We prove that for any positive integers $k$ and $d$, if a graph $G$ has maximum average degree at most $2k + frac{2d}{d+k+1}$, then $G$ decomposes into $k+1$ pseudoforests $C_{1},ldots,C_{k+1}$ such that there is an $i$ such that for every connected component $C$ of $C_{i}$, we have that $e(C) leq d$.
The Strong Nine Dragon Tree Conjecture asserts that for any integers $k$ and $d$ any graph with fractional arboricity at most $k + frac{d}{d+k+1}$ decomposes into $k+1$ forests, such that for at least one of the forests, every connected component con
We prove that there is $c>0$ such that for all sufficiently large $n$, if $T_1,dots,T_n$ are any trees such that $T_i$ has $i$ vertices and maximum degree at most $cn/log n$, then ${T_1,dots,T_n}$ packs into $K_n$. Our main result actually allows to
In the 3SUM-Indexing problem the goal is to preprocess two lists of elements from $U$, $A=(a_1,a_2,ldots,a_n)$ and $B=(b_1,b_2,...,b_n)$, such that given an element $cin U$ one can quickly determine whether there exists a pair $(a,b)in A times B$ whe
We show that all nontrivial members of the Kinoshita-Terasaka and Conway knot families satisfy the purely cosmetic surgery conjecture.
We prove that any quasirandom graph with $n$ vertices and $rn$ edges can be decomposed into $n$ copies of any fixed tree with $r$ edges. The case of decomposing a complete graph establishes a conjecture of Ringel from 1963.