ﻻ يوجد ملخص باللغة العربية
The Strong Nine Dragon Tree Conjecture asserts that for any integers $k$ and $d$ any graph with fractional arboricity at most $k + frac{d}{d+k+1}$ decomposes into $k+1$ forests, such that for at least one of the forests, every connected component contains at most $d$ edges. We prove this conjecture when $d leq k+1$. We also prove an approximate version of this conjecture, that is, we prove that for any positive integers $k$ and $d$, any graph with fractional arboricity at most $k + frac{d}{d+k+1}$ decomposes into $k+1$ forests, such that one for at least one of the forests, every connected component contains at most $d + frac{d(k (2lceil frac{d}{k+1} +2 rceil)^{lceil frac{d}{k+1} + 2) rceil} - k)}{k+1} $ edges.
We prove that for any positive integers $k$ and $d$, if a graph $G$ has maximum average degree at most $2k + frac{2d}{d+k+1}$, then $G$ decomposes into $k+1$ pseudoforests $C_{1},ldots,C_{k+1}$ such that there is an $i$ such that for every connected
We prove that for any $varepsilon>0$, for any large enough $t$, there is a graph $G$ that admits no $K_t$-minor but admits a $(frac32-varepsilon)t$-colouring that is frozen with respect to Kempe changes, i.e. any two colour classes induce a connected
We say that the families $mathcal F_1,ldots, mathcal F_{s+1}$ of $k$-element subsets of $[n]$ are cross-dependent if there are no pairwise disjoint sets $F_1,ldots, F_{s+1}$, where $F_iin mathcal F_i$ for each $i$. The rainbow version of the ErdH os
Loebl, Komlos, and Sos conjectured that any graph with at least half of its vertices of degree at least k contains every tree with at most k edges. We propose a version of this conjecture for skewed trees, i.e., we consider the class of trees with at
We prove that any quasirandom graph with $n$ vertices and $rn$ edges can be decomposed into $n$ copies of any fixed tree with $r$ edges. The case of decomposing a complete graph establishes a conjecture of Ringel from 1963.