ﻻ يوجد ملخص باللغة العربية
We prove that there is $c>0$ such that for all sufficiently large $n$, if $T_1,dots,T_n$ are any trees such that $T_i$ has $i$ vertices and maximum degree at most $cn/log n$, then ${T_1,dots,T_n}$ packs into $K_n$. Our main result actually allows to replace the host graph $K_n$ by an arbitrary quasirandom graph, and to generalize from trees to graphs of bounded degeneracy that are rich in bare paths, contain some odd degree vertices, and only satisfy much less stringent restrictions on their number of vertices.
We prove that any quasirandom graph with $n$ vertices and $rn$ edges can be decomposed into $n$ copies of any fixed tree with $r$ edges. The case of decomposing a complete graph establishes a conjecture of Ringel from 1963.
A subset of vertices is a {it maximum independent set} if no two of the vertices are adjacent and the subset has maximum cardinality. A subset of vertices is called a {it maximum dissociation set} if it induces a subgraph with vertex degree at most 1
Minimum $k$-Section denotes the NP-hard problem to partition the vertex set of a graph into $k$ sets of sizes as equal as possible while minimizing the cut width, which is the number of edges between these sets. When $k$ is an input parameter and $n$
Loebl, Komlos, and Sos conjectured that any graph with at least half of its vertices of degree at least k contains every tree with at most k edges. We propose a version of this conjecture for skewed trees, i.e., we consider the class of trees with at
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve