ﻻ يوجد ملخص باللغة العربية
Self-gravitational force calculation for infinitesimally thin disks is important for studies on the evolution of galactic and protoplanetary disks. Although high-order methods have been developed for hydrodynamic and magneto-hydrodynamic equations, high-order improvement is desirable for solving self-gravitational forces for thin disks. In this work, we present a new numerical algorithm that is of linear complexity and of high-order accuracy. This approach is fast since the force calculation is associated with a convolution form, and the fast calculation can be achieved using Fast Fourier Transform. The nice properties, such as the finite supports and smoothness, of B-splines are exploited to stably interpolate a surface density and achieve a high-order accuracy in forces. Moreover, if the mass distribution of interest is exclusively confined within a calculation domain, the method does not require artificial boundary values to be specified before the force calculation. To validate the proposed algorithm, a series of numerical tests, ranging from 1st- to 3rd-order implementations, are performed and the results are compared with analytic expressions derived for 3rd- and 4th-order generalized Maclaurin disks. We conclude that the improvement on the numerical accuracy is significant with the order of the method, with only little increase of the complexity of the method.
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two- dimensional Cartes
We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel
We present a simple and effective multigrid-based Poisson solver of second-order accuracy in both gravitational potential and forces in terms of the one, two and infinity norms. The method is especially suitable for numerical simulations using nested
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul
In the supercritical range of the polytropic indices $gammain(1,frac43)$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler-Poisson system. These solutions exhibit gravitational collapse in the sense