ﻻ يوجد ملخص باللغة العربية
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two- dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calcu- lations of the hydrodynamics and self-gravitational forces are relatively straight- forward for attaining second order accuracy. However, in polar coordinates, a second order calculation of self-gravitational forces is required for matching the second order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second order accuracy without artifi- cial boundary conditions. The Poisson integral in polar coordinates is expressed in a convolution form and the corresponding numerical complexity is nearly lin- ear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.
Self-gravitational force calculation for infinitesimally thin disks is important for studies on the evolution of galactic and protoplanetary disks. Although high-order methods have been developed for hydrodynamic and magneto-hydrodynamic equations, h
We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel
We present a simple and effective multigrid-based Poisson solver of second-order accuracy in both gravitational potential and forces in terms of the one, two and infinity norms. The method is especially suitable for numerical simulations using nested
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul
We review our current knowledge about a particular case of decoupled gas kinematics -- inner ionized-gas polar disks. Though more difficult to be noticed, they seem to be more numerous than their large-scale counterparts; our recent estimates imply a