ﻻ يوجد ملخص باللغة العربية
We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second order accuracy using numerical simulations. The proposed method is accurate, computationally fast and has the potential to be applied to the studies of planetary migration and the gaseous morphology of disk galaxies.
Self-gravitational force calculation for infinitesimally thin disks is important for studies on the evolution of galactic and protoplanetary disks. Although high-order methods have been developed for hydrodynamic and magneto-hydrodynamic equations, h
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two- dimensional Cartes
We present a simple and effective multigrid-based Poisson solver of second-order accuracy in both gravitational potential and forces in terms of the one, two and infinity norms. The method is especially suitable for numerical simulations using nested
An error in the gravitational force that the source of gravity induces on itself (a self-force error) violates both the conservation of linear momentum and the conservation of energy. If such errors are present in a self-gravitating system and are no
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul