ﻻ يوجد ملخص باللغة العربية
We study the Excluded Grid Theorem, a fundamental structural result in graph theory, that was proved by Robertson and Seymour in their seminal work on graph minors. The theorem states that there is a function $f: mathbb{Z}^+ to mathbb{Z}^+$, such that for every integer $g>0$, every graph of treewidth at least $f(g)$ contains the $(gtimes g)$-grid as a minor. For every integer $g>0$, let $f(g)$ be the smallest value for which the theorem holds. Establishing tight bounds on $f(g)$ is an important graph-theoretic question. Robertson and Seymour showed that $f(g)=Omega(g^2log g)$ must hold. For a long time, the best known upper bounds on $f(g)$ were super-exponential in $g$. The first polynomial upper bound of $f(g)=O(g^{98}text{poly}log g)$ was proved by Chekuri and Chuzhoy. It was later improved to $f(g) = O(g^{36}text{poly} log g)$, and then to $f(g)=O(g^{19}text{poly}log g)$. In this paper we further improve this bound to $f(g)=O(g^{9}text{poly} log g)$. We believe that our proof is significantly simpler than the proofs of the previous bounds. Moreover, while there are natural barriers that seem to prevent the previous methods from yielding tight bounds for the theorem, it seems conceivable that the techniques proposed in this paper can lead to even tighter bounds on $f(g)$.
The following online bin packing problem is considered: Items with integer sizes are given and variable sized bins arrive online. A bin must be used if there is still an item remaining which fits in it when the bin arrives. The goal is to minimize th
We establish a bound for the classic PUSH-PULL rumor spreading protocol on arbitrary graphs, in terms of the vertex expansion of the graph. We show that O(log^2(n)/alpha) rounds suffice with high probability to spread a rumor from a single node to al
We study the problem of exploring an oriented grid with autonomous agents governed by finite automata. In the case of a 2-dimensional grid, the question how many agents are required to explore the grid, or equivalently, find a hidden treasure in the
A fundamental result in extremal set theory is Katonas shadow intersection theorem, which extends the Kruskal-Katona theorem by giving a lower bound on the size of the shadow of an intersecting family of $k$-sets in terms of its size. We improve this
Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hypergraphs, which are much richer and may offer new app