ﻻ يوجد ملخص باللغة العربية
Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hypergraphs, which are much richer and may offer new applications. However, the current bounds on the size of hypergraph sparsifiers are not as tight as the corresponding bounds for graphs. Our first result is a polynomial-time algorithm that, given a hypergraph on $n$ vertices with maximum hyperedge size $r$, outputs an $epsilon$-spectral sparsifier with $O^*(nr)$ hyperedges, where $O^*$ suppresses $(epsilon^{-1} log n)^{O(1)}$ factors. This size bound improves the two previous bounds: $O^*(n^3)$ [Soma and Yoshida, SODA19] and $O^*(nr^3)$ [Bansal, Svensson and Trevisan, FOCS19]. Our main technical tool is a new method for proving concentration of the nonlinear analogue of the quadratic form of the Laplacians for hypergraph expanders. We complement this with lower bounds on the bit complexity of any compression scheme that $(1+epsilon)$-approximates all the cuts in a given hypergraph, and hence also on the bit complexity of every $epsilon$-cut/spectral sparsifier. These lower bounds are based on Ruzsa-Szemeredi graphs, and a particular instantiation yields an $Omega(nr)$ lower bound on the bit complexity even for fixed constant $epsilon$. This is tight up to polylogarithmic factors in $n$, due to recent hypergraph cut sparsifiers of [Chen, Khanna and Nagda, FOCS20]. Finally, for directed hypergraphs, we present an algorithm that computes an $epsilon$-spectral sparsifier with $O^*(n^2r^3)$ hyperarcs, where $r$ is the maximum size of a hyperarc. For small $r$, this improves over $O^*(n^3)$ known from [Soma and Yoshida, SODA19], and is getting close to the trivial lower bound of $Omega(n^2)$ hyperarcs.
Among the most important graph parameters is the Diameter, the largest distance between any two vertices. There are no known very efficient algorithms for computing the Diameter exactly. Thus, much research has been devoted to how fast this parameter
Vizings celebrated theorem asserts that any graph of maximum degree $Delta$ admits an edge coloring using at most $Delta+1$ colors. In contrast, Bar-Noy, Naor and Motwani showed over a quarter century that the trivial greedy algorithm, which uses $2D
The following online bin packing problem is considered: Items with integer sizes are given and variable sized bins arrive online. A bin must be used if there is still an item remaining which fits in it when the bin arrives. The goal is to minimize th
We consider the following online optimization problem. We are given a graph $G$ and each vertex of the graph is assigned to one of $ell$ servers, where servers have capacity $k$ and we assume that the graph has $ell cdot k$ vertices. Initially, $G$ d
We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of random-walk matrix-polynomial $$L_alpha(G)=D-sum_{r=1}^dalpha_rD(D^{-1}A)^r$$ where $A$ is the adjacency matrix of a weighted, undirected graph,