ترغب بنشر مسار تعليمي؟ اضغط هنا

Tight Bounds for Deterministic High-Dimensional Grid Exploration

100   0   0.0 ( 0 )
 نشر من قبل Julian Portmann
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of exploring an oriented grid with autonomous agents governed by finite automata. In the case of a 2-dimensional grid, the question how many agents are required to explore the grid, or equivalently, find a hidden treasure in the grid, is fully understood in both the synchronous and the semi-synchronous setting. For higher dimensions, Dobrev, Narayanan, Opatrny, and Pankratov [ICALP19] showed very recently that, surprisingly, a (small) constant number of agents suffices to find the treasure, independent of the number of dimensions, thereby disproving a conjecture by Cohen, Emek, Louidor, and Uitto [SODA17]. Dobrev et al. left as an open question whether their bounds on the number of agents can be improved. We answer this question in the affirmative for deterministic finite automata: we show that 3 synchronous and 4 semi-synchronous agents suffice to explore an $n$-dimensional grid for any constant $n$. The bounds are optimal and notably, the matching lower bounds already hold in the 2-dimensional case. Our techniques can also be used to make progress on other open questions asked by Dobrev et al.: we prove that 4 synchronous and 5 semi-synchronous agents suffice for polynomial-time exploration, and we show that, under a natural assumption, 3 synchronous and 4 semi-synchronous agents suffice to explore unoriented grids of arbitrary dimension (which, again, is tight).



قيم البحث

اقرأ أيضاً

130 - Joan Boyar , Faith Ellen 2014
The following online bin packing problem is considered: Items with integer sizes are given and variable sized bins arrive online. A bin must be used if there is still an item remaining which fits in it when the bin arrives. The goal is to minimize th e total size of all the bins used. Previously, a lower bound of 5/4 on the competitive ratio of this problem was achieved using jobs of size S and 2S-1. For these item sizes and maximum bin size 4S-3, we obtain asymptotically matching upper and lower bounds, which vary depending on the ratio of the number of small jobs to the number of large jobs.
61 - Julia Chuzhoy , Zihan Tan 2019
We study the Excluded Grid Theorem, a fundamental structural result in graph theory, that was proved by Robertson and Seymour in their seminal work on graph minors. The theorem states that there is a function $f: mathbb{Z}^+ to mathbb{Z}^+$, such tha t for every integer $g>0$, every graph of treewidth at least $f(g)$ contains the $(gtimes g)$-grid as a minor. For every integer $g>0$, let $f(g)$ be the smallest value for which the theorem holds. Establishing tight bounds on $f(g)$ is an important graph-theoretic question. Robertson and Seymour showed that $f(g)=Omega(g^2log g)$ must hold. For a long time, the best known upper bounds on $f(g)$ were super-exponential in $g$. The first polynomial upper bound of $f(g)=O(g^{98}text{poly}log g)$ was proved by Chekuri and Chuzhoy. It was later improved to $f(g) = O(g^{36}text{poly} log g)$, and then to $f(g)=O(g^{19}text{poly}log g)$. In this paper we further improve this bound to $f(g)=O(g^{9}text{poly} log g)$. We believe that our proof is significantly simpler than the proofs of the previous bounds. Moreover, while there are natural barriers that seem to prevent the previous methods from yielding tight bounds for the theorem, it seems conceivable that the techniques proposed in this paper can lead to even tighter bounds on $f(g)$.
Relaxing the sequential specification of shared objects has been proposed as a promising approach to obtain implementations with better complexity. In this paper, we study the step complexity of relaxed variants of two common shared objects: max regi sters and counters. In particular, we consider the $k$-multiplicative-accurate max register and the $k$-multiplicative-accurate counter, where read operations are allowed to err by a multiplicative factor of $k$ (for some $k in mathbb{N}$). More accurately, reads are allowed to return an approximate value $x$ of the maximum value $v$ previously written to the max register, or of the number $v$ of increments previously applied to the counter, respectively, such that $v/k leq x leq v cdot k$. We provide upper and lower bounds on the complexity of implementing these objects in a wait-free manner in the shared memory model.
In this paper, we solve the local gathering problem of a swarm of $n$ indistinguishable, point-shaped robots on a two dimensional grid in asymptotically optimal time $mathcal{O}(n)$ in the fully synchronous $mathcal{FSYNC}$ time model. Given an arbit rarily distributed (yet connected) swarm of robots, the gathering problem on the grid is to locate all robots within a $2times 2$-sized area that is not known beforehand. Two robots are connected if they are vertical or horizontal neighbors on the grid. The locality constraint means that no global control, no compass, no global communication and only local vision is available; hence, a robot can only see its grid neighbors up to a constant $L_1$-distance, which also limits its movements. A robot can move to one of its eight neighboring grid cells and if two or more robots move to the same location they are emph{merged} to be only one robot. The locality constraint is the significant challenging issue here, since robot movements must not harm the (only globally checkable) swarm connectivity. For solving the gathering problem, we provide a synchronous algorithm -- executed by every robot -- which ensures that robots merge without breaking the swarm connectivity. In our model, robots can obtain a special state, which marks such a robot to be performing specific connectivity preserving movements in order to allow later merge operations of the swarm. Compared to the grid, for gathering in the Euclidean plane for the same robot and time model the best known upper bound is $mathcal{O}(n^2)$.
We consider a swarm of $n$ autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robot s is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs $mathcal{O}(n^2)$ rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous $mathcal{FSYNC}$ model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and flags to communicate these states to neighbors in viewing range. They gather in time $mathcal{O}(n)$. In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), flags and states. We prove its correctness and an $mathcal{O}(n^2)$ time bound in the fully synchronous $mathcal{FSYNC}$ time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a $2times 2$ square, because in $mathcal{FSYNC}$ such configurations cannot be solved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا