ترغب بنشر مسار تعليمي؟ اضغط هنا

Time reversal symmetry in cosmology and the creation of a universe-antiuniverse pair

77   0   0.0 ( 0 )
 نشر من قبل Salvador Robles-Perez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical evolution of the universe can be seen as a parametrised worldline of the minisuperspace, with the time variable $t$ the parameter that parametrises the worldline. The time reversal symmetry of the field equations implies that for any positive oriented solution there can be a symmetric negative oriented one that, in terms of the same time variable, represent an expanding and a contracting universe, respectively. However, the choice of the time variable induced by the correct value of the Schrodinger equation in the two universes makes that their physical time variables could be reversely related. In that case, the two universes would be both expanding universes from the point of view of their internal inhabitants, who identify matter with the particles that move in their spacetimes and antimatter with the particles that move in the time reversely symmetric universe. If the assumptions considered are consistent with a realistic scenario of our universe, the creation of a universe-antiuniverse pair might explain two main and related problems in cosmology: the time asymmetry and the primordial matter-antimatter asymmetry of our universe.



قيم البحث

اقرأ أيضاً

122 - Houri Ziaeepour 2020
So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary result s for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on 3 well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; Universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has $SU(Nrightarrow infty) cong text{area preserving Diff.} (S_2)$ symmetry, which is parameterized by two angular variables. We show that in absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference - {it observer} - and another as {it clock}, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore, its quantization is meaningless. In this view, the Einstein equation presents the projection of quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to subsystems/particles without having any implication for the infinite dimensional symmetry and its associated interaction percived as gravity. This explains why gravity is a universal force.
78 - Pedro Carrilho 2019
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute it s observational consequences. This includes a detailed exposition of cosmological perturbation theory and the theory of inflation. We then describe the results in this thesis, starting with the non-linear evolution of the curvature perturbation in the presence of vector and tensor fluctuations, in which we identify the version of that variable that is conserved in the most general situation. Next, we use second order perturbation theory to describe the most general initial conditions for the evolution of scalar perturbations at second order in the standard cosmological model. We compute approximate solutions valid in the initial stages of the evolution, which can be used to initialize second order Boltzmann codes, and to compute many observables taking isocurvature modes into account. We then move on to the study of the inflationary Universe. We start by analysing a new way to compute the consequences of a sudden transition in the evolution of a scalar during inflation. We use the formalism of quantum quenches to compute the effect of those transitions on the spectral index of perturbations. Finally, we detail the results of the exploration of a multi-field model of inflation with a non-minimal coupling to gravity. We study popular attractor models in this regime in both the metric and the Palatini formulations of gravity and find all results for both the power spectrum and bispectrum of fluctuations to closely resemble those of the single-field case. In all systems under study we discuss the effects of non-linear dynamics and their importance for the resolution of problems in cosmology.
Using Relativistic Quantum Geometry we study back-reaction effects of space-time inside the causal horizon of a static de Sitter metric, in order to make a quantum thermodynamical description of space-time. We found a finite number of discrete energy levels for a scalar field from a polynomial condition of the confluent hypergeometric functions expanded around $r=0$. As in the previous work, we obtain that the uncertainty principle is valid for each energy level on sub-horizon scales of space-time. We found that temperature and entropy are dependent on the number of sub-states on each energys level and the Bekenstein-Hawking temperature of each energy level is recovered when the number of sub-states of a given level tends to infinity. We propose that the primordial state of the universe could be described by a de Sitter metric with Planck energy $E_p=m_p,c^2$, and a B-H temperature: $T_{BH}=left(frac{hbar,c}{2pi,l_p,K_B}right)$.
We consider a simple cosmological model in order to show the importance of unstable particle creation for the validity of the semiclassical approximation. Using the mathematical structure of rigged Hilbert spaces we show that particle creation is the seed of decoherence which enables the quantum to classical transition.
Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation soluti ons, which do not impose any constraint on the spacial curvature of the universe. This is because only such $ k=0 $ radiation solutions poses a homothetic Killimg vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved space time, and there are no deviations from standard gauge filed equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang Mills equations, for more general space times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا