ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Like Scalar Field and Gauge Fields in Cosmology for a theory with Dynamical Time

99   0   0.0 ( 0 )
 نشر من قبل Eduardo Guendelman I
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spacial curvature of the universe. This is because only such $ k=0 $ radiation solutions poses a homothetic Killimg vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved space time, and there are no deviations from standard gauge filed equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang Mills equations, for more general space times.



قيم البحث

اقرأ أيضاً

Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The aniso tropic matter sector is implemented as a $j$-form (field-strength level), where $j,in,{1,3}$, and the spaces studied are Bianchi space-times of solvable type. Walds no-hair theorem is extended to include the $j$-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI$_0$, VI$_h$, VII$_0$ and VII$_h$, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of ~[1], with some remarks towards new results which will be further laid out in upcoming work.
112 - Hemza Azri , Salah Nasri 2021
In Eddington gravity, the action principle involves only the symmetric parts of the connection and the Ricci tensor, with a metric that emerges proportionally to the latter. Here, we relax this symmetric character, prolong the action with the antisym metric parts of the Ricci term, and allow for various couplings with scalar fields. We propose two possible invariant actions formed by distinct combinations of the independent Ricci tensors and show that the generated metric must involve an additional antisymmetric part due to the relaxation of the symmetrization property. The comprehensive study shows that the second curvature influences the dynamics of the connection, hence its solution in terms of the metric, and the evolution of the scalar fields. These new dynamical features are expected to stand viable and to have interesting implications in domains where scalar fields are indispensable.
In 1981 Wyman classified the solutions of the Einstein--Klein--Gordon equations with static spherically symmetric spacetime metric and vanishing scalar potential. For one of these classes, the scalar field linearly grows with time. We generalize this symmetry noninheriting solution, perturbatively, to a rotating one and extend the static solution exactly to arbitrary spacetime dimensions. Furthermore, we investigate the existence of nonminimally coupled, time-dependent real scalar fields on top of static black holes, and prove a no-hair theorem for stealth scalar fields on the Schwarzschild background.
The method of adiabatic invariants for time dependent Hamiltonians is applied to a massive scalar field in a de Sitter space-time. The scalar field ground state, its Fock space and coherent states are constructed and related to the particle states. D iverse quantities of physical interest are illustrated, such as particle creation and the way a classical probability distribution emerges for the system at late times.
We study the dynamic collapse driven by a scalar field, when a relativistic observer falls co-moving with the collapse and cross the horizon of a Schwarzschild black-hole (BH), at $t=t_0$. During the collapse the scale of time is considered as variab le. Back-reaction effects and gravitational waves produced during the exponential collapse are studied. We demonstrate that back-reaction effects act as the source of gravitational waves emitted during the collapse, and wavelengths of gravitational waves (GW) are in the range: $lambda ll r_sequiv {e^{-2h_0t_0}over 2 h_0}$, that is, smaller than the Schwarzschild radius. We demonstrate that during all the collapse the global topology of the space-time remains hyperbolic when the observer cross the horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا