ﻻ يوجد ملخص باللغة العربية
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute its observational consequences. This includes a detailed exposition of cosmological perturbation theory and the theory of inflation. We then describe the results in this thesis, starting with the non-linear evolution of the curvature perturbation in the presence of vector and tensor fluctuations, in which we identify the version of that variable that is conserved in the most general situation. Next, we use second order perturbation theory to describe the most general initial conditions for the evolution of scalar perturbations at second order in the standard cosmological model. We compute approximate solutions valid in the initial stages of the evolution, which can be used to initialize second order Boltzmann codes, and to compute many observables taking isocurvature modes into account. We then move on to the study of the inflationary Universe. We start by analysing a new way to compute the consequences of a sudden transition in the evolution of a scalar during inflation. We use the formalism of quantum quenches to compute the effect of those transitions on the spectral index of perturbations. Finally, we detail the results of the exploration of a multi-field model of inflation with a non-minimal coupling to gravity. We study popular attractor models in this regime in both the metric and the Palatini formulations of gravity and find all results for both the power spectrum and bispectrum of fluctuations to closely resemble those of the single-field case. In all systems under study we discuss the effects of non-linear dynamics and their importance for the resolution of problems in cosmology.
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximati
We study the tensor modes of linear metric perturbations within an effective framework of loop quantum cosmology. After a review of inverse-volume and holonomy corrections in the background equations of motion, we solve the linearized tensor modes eq
We show that it is possible to realize a cosmological bouncing solution in an anisotropic but homogeneous Bianchi-I background in a class of non-local, infinite derivative theories of gravity. We show that the anisotropic shear grows slower than in g
The classical evolution of the universe can be seen as a parametrised worldline of the minisuperspace, with the time variable $t$ the parameter that parametrises the worldline. The time reversal symmetry of the field equations implies that for any po
A number of scalar field models proposed as alternatives to the standard inflationary scenario involve contracting phases which precede the universes present phase of expansion. An important question concerning such models is whether there are effect