We consider a simple cosmological model in order to show the importance of unstable particle creation for the validity of the semiclassical approximation. Using the mathematical structure of rigged Hilbert spaces we show that particle creation is the seed of decoherence which enables the quantum to classical transition.
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results
of the semiclassical interpretation, and its generalisation known as the Born-Oppenheimer approach to quantum cosmology, can be obtained by gauge fixing, both at the classical and quantum levels. By `gauge fixing we mean a particular choice of the time coordinate, which determines the arbitrary Lagrange multiplier that appears in Hamiltons equations. In the quantum theory, we adopt a tentative definition of the (Klein-Gordon) inner product, which is positive definite for solutions of the quantum constraint equation found via an iterative procedure that corresponds to a weak coupling expansion in powers of the inverse Planck mass. We conclude that the wave function should be interpreted as a state vector for both gravitational and matter degrees of freedom, the dynamics of which is unitary with respect to the chosen inner product and time variable.
The classical evolution of the universe can be seen as a parametrised worldline of the minisuperspace, with the time variable $t$ the parameter that parametrises the worldline. The time reversal symmetry of the field equations implies that for any po
sitive oriented solution there can be a symmetric negative oriented one that, in terms of the same time variable, represent an expanding and a contracting universe, respectively. However, the choice of the time variable induced by the correct value of the Schrodinger equation in the two universes makes that their physical time variables could be reversely related. In that case, the two universes would be both expanding universes from the point of view of their internal inhabitants, who identify matter with the particles that move in their spacetimes and antimatter with the particles that move in the time reversely symmetric universe. If the assumptions considered are consistent with a realistic scenario of our universe, the creation of a universe-antiuniverse pair might explain two main and related problems in cosmology: the time asymmetry and the primordial matter-antimatter asymmetry of our universe.
We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating univ
erses can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.
Recently a model of metric fluctuations has been proposed which yields an effective Schrodinger equation for a quantum particle with a modified inertial mass, leading to a violation of the weak equivalence principle. The renormalization of the inerti
al mass tensor results from a local space average over the fluctuations of the metric over a fixed background metric. Here, we demonstrate that the metric fluctuations of this model lead to a further physical effect, namely to an effective decoherence of the quantum particle. We derive a quantum master equation for the particles density matrix, discuss in detail its dissipation and decoherence properties, and estimate the corresponding decoherence time scales. By contrast to other models discussed in the literature, in the present approach the metric fluctuations give rise to a decay of the coherences in the energy representation, i. e., to a localization in energy space.
Several approaches to the matter creation problem in the context of cosmological models are summarily reviewed. A covariant formulation of the general relativistic imperfect simple fluid endowed with a process of matter creation is presented. By cons
idering the standard big bang model, it is shown how the recent results of Prigogine et alii cite{1} can be recovered and, at the same time their limits of validity are explicited.
سجل دخول لتتمكن من نشر تعليقات
التعليقات
جاري جلب التعليقات
حدث خطأ أثناء جلب التعليقات!
حذف التعليق
هل أنت متأكد أنك ترغب في حذف تعليقك ؟
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها