ﻻ يوجد ملخص باللغة العربية
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are subtracted from the leading Wilson coefficient. We find that our OPE prediction can explain the lattice data at $Lambda_{rm QCD} r lesssim 0.8$. This allows us to use a larger window in matching, which leads to a more reliable determination. We obtain $alpha_s(M_Z)=0.1179^{+0.0015}_{-0.0014}$.
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormal
Perturbative calculations of the static QCD potential have the $u=3/2$ renormalon uncertainty. In the multipole expansion performed within pNRQCD, this uncertainty at LO is known to get canceled against the ultrasoft correction at NLO. To investigate
We perform path integral for a quark (antiquark) in the presence of an arbitrary space-dependent static color potential A^a_0(x)(=-int dx E^a(x)) with arbitrary color index a=1,2,...8 in SU(3) and obtain an exact non-perturbative expression for the g
While lattice QCD allows for reliable results at small momentum transfers (large quark separations), perturbative QCD is restricted to large momentum transfers (small quark separations). The latter is determined up to a reference momentum scale $Lamb
Hadronic tau decays offer the possibility of determining the strong coupling alpha_s at relatively low energy. Precisely for this reason, however, good control over the perturbative QCD corrections, the non-perturbative condensate contributions in th