ﻻ يوجد ملخص باللغة العربية
Perturbative calculations of the static QCD potential have the $u=3/2$ renormalon uncertainty. In the multipole expansion performed within pNRQCD, this uncertainty at LO is known to get canceled against the ultrasoft correction at NLO. To investigate the net contribution remaining after this renormalon cancellation, we propose a formulation to separate the ultrasoft correction into renormalon uncertainties and a renormalon independent part. We focus on very short distances $Lambda_{rm QCD} r lesssim 0.1$ and investigate the ultrasoft correction based on its perturbative evaluation in the large-$beta_0$ approximation. We also propose a method to examine the local gluon condensate, which appears as the first nonperturbative effect to the static QCD potential, without suffering from the $u=2$ renormalon.
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormal
Following the procedure and motivations developed by Richardson, Buchmuller and Tye, we derive the potential of static quarks consistent with both the three-loop running of QCD coupling constant under the two-loop perturbative matching of V and MS-ba
We derive a static potential for a heavy quark-antiquark pair propagating in Minkowski time at finite temperature, by defining a suitable gauge-invariant Greens function and computing it to first non-trivial order in Hard Thermal Loop resummed pertur
We report results on the static quark potential in two-flavor full QCD. The calculation is performed for three values of lattice spacing $a^{-1}approx 0.9, 1.3$ and 2.5 GeV on $12^3{times}24, 16^3{times}32$ and $24^3{times}48$ lattices respectively,