ﻻ يوجد ملخص باللغة العربية
While lattice QCD allows for reliable results at small momentum transfers (large quark separations), perturbative QCD is restricted to large momentum transfers (small quark separations). The latter is determined up to a reference momentum scale $Lambda$, which is to be provided from outside, e.g. from experiment or lattice QCD simulations. In this article, we extract $Lambda_{overline{textrm{MS}}}$ for QCD with $n_f=2$ dynamical quark flavors by matching the perturbative static quark-antiquark potential in momentum space to lattice results in the intermediate momentum regime, where both approaches are expected to be applicable. In a second step, we combine the lattice and the perturbative results to provide a complete analytic parameterization of the static quark-antiquark potential in position space up to the string breaking scale. As an exemplary phenomenological application of our all-distances potential we compute the bottomonium spectrum in the static limit.
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormal
We extend HPQCDs earlier $n_f=4$ lattice-QCD analysis of the ratio of $overline{mathrm{MSB}}$ masses of the $b$ and $c$ quark to include results from finer lattices (down to 0.03fm) and a new calculation of QED contributions to the mass ratio. We fin
The existing theory of hard exclusive QCD processes is based on two assumptions: (i) $factorization$ into a $hard,block$ times light front distribution amplitudes (DAs); (ii) use of perturbative gluon exchanges within the hard block. However, unlike
We study the analytic properties of the t Hooft coupling expansion of the beta-function at the leading nontrivial large-$N_f$ order for QED, QCD, Super QED and Super QCD. For each theory, the t Hooft coupling expansion is convergent. We discover that