ﻻ يوجد ملخص باللغة العربية
We perform path integral for a quark (antiquark) in the presence of an arbitrary space-dependent static color potential A^a_0(x)(=-int dx E^a(x)) with arbitrary color index a=1,2,...8 in SU(3) and obtain an exact non-perturbative expression for the generating functional. We show that such a path integration is possible even if one can not solve the Dirac equation in the presence of arbitrary space-dependent potential. It may be possible to further explore this path integral technique to study non-perturbative bound state formation.
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormal
We investigate the phase diagram of QCD-like gauge theories at strong coupling at finite magnetic field $B$, temperature $T$ and baryon chemical potential $mu$ using the improved holographic QCD model including the full backreaction of the quarks in
Using state of the art lattice techniques we investigate the static baryon potential. We employ the multi-hit procedure for the time links and a variational approach to determine the ground state with sufficient accuracy that, for distances up to $si
Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can