ﻻ يوجد ملخص باللغة العربية
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer method, and Bellmans dynamic programming method. However, none of them could generate universal and light code. In this paper, we present a new deterministic algorithm based on a novel data arrangement, which could generate such code and return all solutions. If n is small enough, it is efficient for usual purpose. We also present a probabilistic version with one-sided error and a greedy algorithm which could generate a solution with minimized variance.
In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as t
We show that Nederlofs algorithm [Information Processing Letters, 118 (2017), 15-16] for constructing a proof that the number of subsets summing to a particular integer equals a claimed quantity is flawed because: 1) its consistence is not kept; 2) the proposed recurrence formula is incorrect.
We revisit the Subset Sum problem over the finite cyclic group $mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided near-optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SO
This paper proves that there does not exist a polynomial-time algorithm to the the subset sum problem. As this problem is in NP, the result implies that the class P of problems admitting polynomial-time algorithms does not equal the class NP of probl
We give the first single-pass streaming algorithm for Column Subset Selection with respect to the entrywise $ell_p$-norm with $1 leq p < 2$. We study the $ell_p$ norm loss since it is often considered more robust to noise than the standard Frobenius