ﻻ يوجد ملخص باللغة العربية
This paper proves that there does not exist a polynomial-time algorithm to the the subset sum problem. As this problem is in NP, the result implies that the class P of problems admitting polynomial-time algorithms does not equal the class NP of problems admitting nondeterministic polynomial-time algorithms.
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer metho
In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as t
The subset sum problem is a typical NP-complete problem that is hard to solve efficiently in time due to the intrinsic superpolynomial-scaling property. Increasing the problem size results in a vast amount of time consuming in conventionally availabl
We construct a function for almost-complex Riemannian manifolds. Non-vanishing of the function for the almost-complex structure implies the almost-complex structure is not integrable. Therefore the constructed function is an obstruction for the exist
The input of the Test Cover problem consists of a set $V$ of vertices, and a collection ${cal E}={E_1,..., E_m}$ of distinct subsets of $V$, called tests. A test $E_q$ separates a pair $v_i,v_j$ of vertices if $|{v_i,v_j}cap E_q|=1.$ A subcollection