ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Nederlofs algorithm for subset sum

84   0   0.0 ( 0 )
 نشر من قبل Zhengjun Cao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that Nederlofs algorithm [Information Processing Letters, 118 (2017), 15-16] for constructing a proof that the number of subsets summing to a particular integer equals a claimed quantity is flawed because: 1) its consistence is not kept; 2) the proposed recurrence formula is incorrect.



قيم البحث

اقرأ أيضاً

323 - Zhengjun Cao , Lihua Liu 2018
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer metho d, and Bellmans dynamic programming method. However, none of them could generate universal and light code. In this paper, we present a new deterministic algorithm based on a novel data arrangement, which could generate such code and return all solutions. If n is small enough, it is efficient for usual purpose. We also present a probabilistic version with one-sided error and a greedy algorithm which could generate a solution with minimized variance.
We revisit the Subset Sum problem over the finite cyclic group $mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided near-optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SO DA17, TALG19) gave a deterministic algorithm running in time $tilde{O}(m^{5/4})$, which was later improved to $O(m log^7 m)$ randomized time by Axiotis et al. (SODA19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellmans iteration over $mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m mathrm{polylog} m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the near-optimal running time of $tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP19).
In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as t he maximum input number $rm{mx}_X$ and the sum of all input numbers $Sigma_X$. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in $n$. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time $n^{O(1)}$. Our main question is: When can dense Subset Sum be solved in near-linear time $tilde{O}(n)$? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters $n,t,rm{mx}_X,Sigma_X$ for which dense Subset Sum is in time $tilde{O}(n)$. For notational convenience we assume without loss of generality that $t ge rm{mx}_X$ (as larger numbers can be ignored) and $t le Sigma_X/2$ (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP91], we show that Subset Sum is in near-linear time $tilde{O}(n)$ if $t gg rm{mx}_X Sigma_X/n^2$. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with $t ll rm{mx}_X Sigma_X/n^2$, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds.
We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time.
In the classical Subset Sum problem we are given a set $X$ and a target $t$, and the task is to decide whether there exists a subset of $X$ which sums to $t$. A recent line of research has resulted in $tilde{O}(t)$-time algorithms, which are (near-)o ptimal under popular complexity-theoretic assumptions. On the other hand, the standard dynamic programming algorithm runs in time $O(n cdot |mathcal{S}(X,t)|)$, where $mathcal{S}(X,t)$ is the set of all subset sums of $X$ that are smaller than $t$. Furthermore, all known pseudopolynomial algorithms actually solve a stronger task, since they actually compute the whole set $mathcal{S}(X,t)$. As the aforementioned two running times are incomparable, in this paper we ask whether one can achieve the best of both worlds: running time $tilde{O}(|mathcal{S}(X,t)|)$. In particular, we ask whether $mathcal{S}(X,t)$ can be computed in near-linear time in the output-size. Using a diverse toolkit containing techniques such as color coding, sparse recovery, and sumset estimates, we make considerable progress towards this question and design an algorithm running in time $tilde{O}(|mathcal{S}(X,t)|^{4/3})$. Central to our approach is the study of top-$k$-convolution, a natural problem of independent interest: given sparse polynomials with non-negative coefficients, compute the lowest $k$ non-zero monomials of their product. We design an algorithm running in time $tilde{O}(k^{4/3})$, by a combination of sparse convolution and sumset estimates considered in Additive Combinatorics. Moreover, we provide evidence that going beyond some of the barriers we have faced requires either an algorithmic breakthrough or possibly new techniques from Additive Combinatorics on how to pass from information on restricted sumsets to information on unrestricted sumsets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا