ﻻ يوجد ملخص باللغة العربية
We revisit the Subset Sum problem over the finite cyclic group $mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided near-optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SODA17, TALG19) gave a deterministic algorithm running in time $tilde{O}(m^{5/4})$, which was later improved to $O(m log^7 m)$ randomized time by Axiotis et al. (SODA19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellmans iteration over $mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m mathrm{polylog} m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the near-optimal running time of $tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP19).
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer metho
We show that Nederlofs algorithm [Information Processing Letters, 118 (2017), 15-16] for constructing a proof that the number of subsets summing to a particular integer equals a claimed quantity is flawed because: 1) its consistence is not kept; 2) the proposed recurrence formula is incorrect.
In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as t
In the classical Subset Sum problem we are given a set $X$ and a target $t$, and the task is to decide whether there exists a subset of $X$ which sums to $t$. A recent line of research has resulted in $tilde{O}(t)$-time algorithms, which are (near-)o
We point out two flaws in the algorithm of Brandes and Kopf (Proc. GD 2001), which is often used for the horizontal coordinate assignment in Sugiyamas framework for layered layouts. One of them has been noted and fixed multiple times, the other has n