We consider a paradigmatic nonvariational scalar Swift-Hohenberg equation that describes short wavenumber or large wavelength pattern forming systems. This work unveils evidence of the transition from stable stationary to moving localized structures in one spatial dimension as a result of a parity breaking instability. This behavior is attributed to the nonvariational character of the model. We show that the nature of this transition is supercritical. We characterize analytically and numerically this bifurcation scenario from which emerges asymmetric moving localized structures. A generalization for two-dimensional settings is discussed.
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are
made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
We show how to exploit excitable regimes mediated by localized structures (LS) to perform AND, OR, and NOT logical operations providing full logical functionality. Our scheme is general and can be implemented in any physical system displaying LS. In
particular, LS in nonlinear photonic devices can be used for all-optical computing applications where several reconfigurable logic gates can be implemented in the transverse plane of a single device, allowing for parallel computing.
We study numerically the cubic-quintic-septic Swift-Hohenberg (SH357) equation on bounded one-dimensional domains. Under appropriate conditions stripes with wave number $kapprox 1$ bifurcate supercritically from the zero state and form S-shaped branc
hes resulting in bistability between small and large amplitude stripes. Within this bistability range we find stationary heteroclinic connections or fronts between small and large amplitude stripes, and demonstrate that the associated spatially localized defect-like structures either snake or fall on isolas. In other parameter regimes we also find heteroclinic connections to spatially homogeneous states, and a multitude of dynamically stable steady states consisting of patches of small and large amplitude stripes with different wave numbers or of spatially homogeneous patches. The SH357 equation is thus extremely rich in the types of patterns it exhibits. Some of the features of the bifurcation diagrams obtained by numerical continuation can be understood using a conserved quantity, the spatial Hamiltonian of the system.
We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability c
onditions that require projection onto a Goldstone mode. Our method works by extending the solvability conditions to finite sized systems, by incorporating the finite sized modifications of the Goldstone mode and associated nonzero eigenvalue. We apply this method to the special case of non-equilibrium domain walls under the influence of Dirichlet boundary conditions in a parametrically forced complex Ginzburg Landau equation, where we examine exotic nonuniform domain wall motion due to the influence of boundary conditions.
We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit and develop a method to study the modulational instabilities leading to pattern formation in all three spatial dimensions. For achievable p
arametric domains we observe total radiation confinement and the formation of 3D localised bright structures. At difference from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such cavity light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity roundtrip. Also, the pulses can shift in the transverse direction, following external field gradients.