ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect-like structures and localized patterns in SH357

68   0   0.0 ( 0 )
 نشر من قبل Hannes Uecker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study numerically the cubic-quintic-septic Swift-Hohenberg (SH357) equation on bounded one-dimensional domains. Under appropriate conditions stripes with wave number $kapprox 1$ bifurcate supercritically from the zero state and form S-shaped branches resulting in bistability between small and large amplitude stripes. Within this bistability range we find stationary heteroclinic connections or fronts between small and large amplitude stripes, and demonstrate that the associated spatially localized defect-like structures either snake or fall on isolas. In other parameter regimes we also find heteroclinic connections to spatially homogeneous states, and a multitude of dynamically stable steady states consisting of patches of small and large amplitude stripes with different wave numbers or of spatially homogeneous patches. The SH357 equation is thus extremely rich in the types of patterns it exhibits. Some of the features of the bifurcation diagrams obtained by numerical continuation can be understood using a conserved quantity, the spatial Hamiltonian of the system.



قيم البحث

اقرأ أيضاً

A simplified model of clonal plant growth is formulated, motivated by observations of spatial structures in Posidonia oceanica meadows in the Mediterranean Sea. Two levels of approximation are considered for the scale-dependent feedback terms. Both t ake into account mortality and clonal, or vegetative, growth as well as competition and facilitation, but the first version is nonlocal in space while the second is local. Study of the tw
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
We show how to exploit excitable regimes mediated by localized structures (LS) to perform AND, OR, and NOT logical operations providing full logical functionality. Our scheme is general and can be implemented in any physical system displaying LS. In particular, LS in nonlinear photonic devices can be used for all-optical computing applications where several reconfigurable logic gates can be implemented in the transverse plane of a single device, allowing for parallel computing.
A hybrid asymptotic-numerical theory is developed to analyze the effect of different types of localized heterogeneities on the existence, linear stability, and slow dynamics of localized spot patterns for the two-component Schnakenberg reaction-diffu sion model in a 2-D domain. Two distinct types of localized heterogeneities are considered: a strong localized perturbation of a spatially uniform feed rate and the effect of removing a small hole in the domain, through which the chemical species can leak out. Our hybrid theory reveals a wide range of novel phenomena such as, saddle-node bifurcations for quasi-equilibrium spot patterns that otherwise would not occur for a homogeneous medium, a new type of spot solution pinned at the concentration point of the feed rate, spot self-replication behavior leading to the creation of more than two new spots, and the existence of a creation-annihilation attractor with at most three spots. Depending on the type of localized heterogeneity introduced, localized spots are either repelled or attracted towards the localized defect on asymptotically long time scales. Results for slow spot dynamics and detailed predictions of various instabilities of quasi-equilibrium spot patterns, all based on our hybrid asymptotic-numerical theory, are illustrated and confirmed through extensive full PDE numerical simulations.
109 - A. Yadav , D. A. Browne 2005
We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability c onditions that require projection onto a Goldstone mode. Our method works by extending the solvability conditions to finite sized systems, by incorporating the finite sized modifications of the Goldstone mode and associated nonzero eigenvalue. We apply this method to the special case of non-equilibrium domain walls under the influence of Dirichlet boundary conditions in a parametrically forced complex Ginzburg Landau equation, where we examine exotic nonuniform domain wall motion due to the influence of boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا