ﻻ يوجد ملخص باللغة العربية
We show how to exploit excitable regimes mediated by localized structures (LS) to perform AND, OR, and NOT logical operations providing full logical functionality. Our scheme is general and can be implemented in any physical system displaying LS. In particular, LS in nonlinear photonic devices can be used for all-optical computing applications where several reconfigurable logic gates can be implemented in the transverse plane of a single device, allowing for parallel computing.
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are
We study numerically the cubic-quintic-septic Swift-Hohenberg (SH357) equation on bounded one-dimensional domains. Under appropriate conditions stripes with wave number $kapprox 1$ bifurcate supercritically from the zero state and form S-shaped branc
We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability c
We study the existence of one-dimensional localized states supported by linear periodic potentials and a domain-wall-like Kerr nonlinearity. The model gives rise to several new types of asymmetric localized states, including single- and double-hump s
We consider a paradigmatic nonvariational scalar Swift-Hohenberg equation that describes short wavenumber or large wavelength pattern forming systems. This work unveils evidence of the transition from stable stationary to moving localized structures