ﻻ يوجد ملخص باللغة العربية
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
We show how to exploit excitable regimes mediated by localized structures (LS) to perform AND, OR, and NOT logical operations providing full logical functionality. Our scheme is general and can be implemented in any physical system displaying LS. In
We study numerically the cubic-quintic-septic Swift-Hohenberg (SH357) equation on bounded one-dimensional domains. Under appropriate conditions stripes with wave number $kapprox 1$ bifurcate supercritically from the zero state and form S-shaped branc
We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuratio
We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability c
We study experimentally light localization at phase-slip waveguides and at the intersection of phase-slips in a two-dimensional (2D) square photonic lattice. Such system allows to observe a variety of effects, including the existence of spatially loc