ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of topological phase transitions through entropy measurements: the case of germanene

108   0   0.0 ( 0 )
 نشر من قبل Sergei Sharapov Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first principle calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement to the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, while the giant resonant feature in the vicinity of zero chemical potential is strongly suppressed at the topological transition point, in the low temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.



قيم البحث

اقرأ أيضاً

We review the behavior of the entropy per particle in various two-dimensional electronic systems. The entropy per particle is an important characteristic of any many body system that tells how the entropy of the ensemble of electrons changes if one a dds one more electron. Recently, it has been demonstrated how the entropy per particle of a two-dimensional electron gas can be extracted from the recharging current dynamics in a planar capacitor geometry. These experiments pave the way to the systematic studies of entropy in various crystal systems including novel two-dimensional crystals such as gapped graphene, germanene and silicene. Theoretically, the entropy per particle is linked to the temperature derivative of the chemical potential of the electron gas by the Maxwell relation. Using this relation, we calculate the entropy per particle in the vicinity of topological transitions in various two-dimensional electronic systems. We show that the entropy experiences quantized steps at the points of Lifshitz transitions in a two-dimensional electronic gas with a parabolic energy spectrum. In contrast, in doubled-gapped Dirac materials, the entropy per particles demonstrates characteristic spikes once the chemical potential passes through the band edges. The transition from a topological to trivial insulator phase in germanene is manifested by the disappearance of a strong zero-energy resonance in the entropy per particle dependence on the chemical potential. We conclude that studies of the entropy per particle shed light on multiple otherwise hidden peculiarities of the electronic band structure of novel two-dimensional crystals.
70 - N. Sedlmayr 2019
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s ymmetries, has become a large widely studied field in its own right. Additionally an analogy between phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions and one is often now far from the equilibrium situation. In these short lecture notes we will give a brief overview of the history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the effect which the topologically protected edge states, which are one of the interesting consequences of topological phases, have on dynamical phase transitions. Second we will consider what happens in the experimentally relevant situations where the system begins either in a thermal state rather than the ground state, or exchanges particles with an external environment.
We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of dis order first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this socalled statistical topological phase.
163 - Yu-Shan Lu , Jian-Lin Li , 2021
The study of magnonic thermal Hall effect has recently attracted attention because this effect can be associated with topological phases activated by Dzyaloshinskii-Moriya interaction, which acts similar to a spin-orbital coupling in an electronic sy stem. A topological phase transition may arise when there exist two or more distinct topological phases, and this transition is often revealed by a gap closing. In this work, we consider a ferromagnetic honeycomb lattice described by a Hamiltonian that contains Heisenberg exchange interaction, Dzyaloshinskii-Moriya interaction, and an applied Zeeman field. When expanding the spin operators in the Hamiltonian using Holstein-Primakoff (HP) transformation to the order of $S^{1/2}$, where $S$ is the magnitude of spin, the thermal Hall conductivity stays negative for all values of parameters such as the strength of Zeeman interaction and temperature. However, we demonstrate in this work that by including the next order, $S^{-1/2}$, in HP transformation to take into account magnon-magnon interaction, the Hartree type of interaction gives rise to topological phase transitions driven by temperature. When the temperature increases, we find that the gap of the magnonic energy spectrum closes at Dirac points at a critical temperature, $T_c$, and the gap-closing is indeed the signature for a topological phase transition as confirmed by showing that the Chern numbers are distinct above and below $T_c$. Finally, our analysis points out that thermal Hall conductivity exhibits sign reversal at the same temperature. This phenomenon can be used in experiments to verify the topological nature of magnons in honeycomb magnets.
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermion s interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا