ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Phase Transitions of Dirac Magnons in Honeycomb Ferromagnets

164   0   0.0 ( 0 )
 نشر من قبل Chien-Te Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of magnonic thermal Hall effect has recently attracted attention because this effect can be associated with topological phases activated by Dzyaloshinskii-Moriya interaction, which acts similar to a spin-orbital coupling in an electronic system. A topological phase transition may arise when there exist two or more distinct topological phases, and this transition is often revealed by a gap closing. In this work, we consider a ferromagnetic honeycomb lattice described by a Hamiltonian that contains Heisenberg exchange interaction, Dzyaloshinskii-Moriya interaction, and an applied Zeeman field. When expanding the spin operators in the Hamiltonian using Holstein-Primakoff (HP) transformation to the order of $S^{1/2}$, where $S$ is the magnitude of spin, the thermal Hall conductivity stays negative for all values of parameters such as the strength of Zeeman interaction and temperature. However, we demonstrate in this work that by including the next order, $S^{-1/2}$, in HP transformation to take into account magnon-magnon interaction, the Hartree type of interaction gives rise to topological phase transitions driven by temperature. When the temperature increases, we find that the gap of the magnonic energy spectrum closes at Dirac points at a critical temperature, $T_c$, and the gap-closing is indeed the signature for a topological phase transition as confirmed by showing that the Chern numbers are distinct above and below $T_c$. Finally, our analysis points out that thermal Hall conductivity exhibits sign reversal at the same temperature. This phenomenon can be used in experiments to verify the topological nature of magnons in honeycomb magnets.



قيم البحث

اقرأ أيضاً

Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermion s interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.
70 - N. Sedlmayr 2019
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s ymmetries, has become a large widely studied field in its own right. Additionally an analogy between phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions and one is often now far from the equilibrium situation. In these short lecture notes we will give a brief overview of the history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the effect which the topologically protected edge states, which are one of the interesting consequences of topological phases, have on dynamical phase transitions. Second we will consider what happens in the experimentally relevant situations where the system begins either in a thermal state rather than the ground state, or exchanges particles with an external environment.
The artificial crystals for classical waves provide a good platform to explore the topological physics proposed originally in condensed matter systems. In this paper, acoustic Dirac degeneracy is realized by simply rotating the scatterers in sonic cr ystals, where the degeneracy is induced accidentally by modulating the scattering strength among the scatterers during the rotation process. This gives a flexible way to create topological phase transition in acoustic systems. Edge states are further observed along the interface separating two topologically distinct gapped sonic crystals.
We investigate the role of disorder on the various topological magnonic phases present in deformed honeycomb ferromagnets. To this end, we introduce a bosonic Bott index to characterize the topology of magnon spectra in finite, disordered systems. Th e consistency between the Bott index and Chern number is numerically established in the clean limit. We demonstrate that topologically protected magnon edge states are robust to moderate disorder and, as anticipated, localized in the strong regime. We predict a disorder-driven topological phase transition, a magnonic analog of the topological Anderson insulator in electronic systems, where the disorder is responsible for the emergence of the nontrivial topology. Combining the results for the Bott index and transport properties, we show that bulk-boundary correspondence holds for disordered topological magnons. Our results open the door for research on topological magnonics as well as other bosonic excitations in finite and disordered systems.
We show how transitions between different Lifshitz phases in bilayer Dirac materials with and without spin-orbit coupling can be studied by driving the system. The periodic driving is induced by a laser and the resultant phase diagram is studied in t he high frequency limit using the Brillouin-Wigner perturbation approach to leading order. The examples of such materials include bilayer graphene and spin-orbit coupled materials such as bilayer silicene. The phase diagrams of the effective static models are analyzed to understand the interplay of topological phase transitions, with changes in the Chern number and topological Lifshitz transitions, with the ensuing changes in the Fermi surface. Both the topological transitions and the Lifshitz transitions are tuned by the amplitude of the drive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا