ﻻ يوجد ملخص باللغة العربية
The study of magnonic thermal Hall effect has recently attracted attention because this effect can be associated with topological phases activated by Dzyaloshinskii-Moriya interaction, which acts similar to a spin-orbital coupling in an electronic system. A topological phase transition may arise when there exist two or more distinct topological phases, and this transition is often revealed by a gap closing. In this work, we consider a ferromagnetic honeycomb lattice described by a Hamiltonian that contains Heisenberg exchange interaction, Dzyaloshinskii-Moriya interaction, and an applied Zeeman field. When expanding the spin operators in the Hamiltonian using Holstein-Primakoff (HP) transformation to the order of $S^{1/2}$, where $S$ is the magnitude of spin, the thermal Hall conductivity stays negative for all values of parameters such as the strength of Zeeman interaction and temperature. However, we demonstrate in this work that by including the next order, $S^{-1/2}$, in HP transformation to take into account magnon-magnon interaction, the Hartree type of interaction gives rise to topological phase transitions driven by temperature. When the temperature increases, we find that the gap of the magnonic energy spectrum closes at Dirac points at a critical temperature, $T_c$, and the gap-closing is indeed the signature for a topological phase transition as confirmed by showing that the Chern numbers are distinct above and below $T_c$. Finally, our analysis points out that thermal Hall conductivity exhibits sign reversal at the same temperature. This phenomenon can be used in experiments to verify the topological nature of magnons in honeycomb magnets.
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermion
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s
The artificial crystals for classical waves provide a good platform to explore the topological physics proposed originally in condensed matter systems. In this paper, acoustic Dirac degeneracy is realized by simply rotating the scatterers in sonic cr
We investigate the role of disorder on the various topological magnonic phases present in deformed honeycomb ferromagnets. To this end, we introduce a bosonic Bott index to characterize the topology of magnon spectra in finite, disordered systems. Th
We show how transitions between different Lifshitz phases in bilayer Dirac materials with and without spin-orbit coupling can be studied by driving the system. The periodic driving is induced by a laser and the resultant phase diagram is studied in t