ﻻ يوجد ملخص باللغة العربية
We review the behavior of the entropy per particle in various two-dimensional electronic systems. The entropy per particle is an important characteristic of any many body system that tells how the entropy of the ensemble of electrons changes if one adds one more electron. Recently, it has been demonstrated how the entropy per particle of a two-dimensional electron gas can be extracted from the recharging current dynamics in a planar capacitor geometry. These experiments pave the way to the systematic studies of entropy in various crystal systems including novel two-dimensional crystals such as gapped graphene, germanene and silicene. Theoretically, the entropy per particle is linked to the temperature derivative of the chemical potential of the electron gas by the Maxwell relation. Using this relation, we calculate the entropy per particle in the vicinity of topological transitions in various two-dimensional electronic systems. We show that the entropy experiences quantized steps at the points of Lifshitz transitions in a two-dimensional electronic gas with a parabolic energy spectrum. In contrast, in doubled-gapped Dirac materials, the entropy per particles demonstrates characteristic spikes once the chemical potential passes through the band edges. The transition from a topological to trivial insulator phase in germanene is manifested by the disappearance of a strong zero-energy resonance in the entropy per particle dependence on the chemical potential. We conclude that studies of the entropy per particle shed light on multiple otherwise hidden peculiarities of the electronic band structure of novel two-dimensional crystals.
We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical pote
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s
The discovery of 2-dimensional (2D) materials, such as CrI3, that retain magnetic ordering at monolayer thickness has resulted in a surge of research in 2D magnetism from both pure and applied perspectives. Here, we report a magneto-Raman spectroscop
We investigate the Loschmidt amplitude and dynamical quantum phase transitions in multiband one dimensional topological insulators. For this purpose we introduce a new solvable multiband model based on the Su-Schrieffer-Heeger model, generalized to u
We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of dis