ﻻ يوجد ملخص باللغة العربية
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermions interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground
The interplay between non-Hermiticity and topology opens an exciting avenue for engineering novel topological matter with unprecedented properties. While previous studies have mainly focused on one-dimensional systems or Chern insulators, here we inv
Topological phases of matter lie at the heart of physics, connecting elegant mathematical principles to real materials that are believed to shape future electronic and quantum computing technologies. To date, studies in this discipline have almost ex
Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geo
The study of magnonic thermal Hall effect has recently attracted attention because this effect can be associated with topological phases activated by Dzyaloshinskii-Moriya interaction, which acts similar to a spin-orbital coupling in an electronic sy