ﻻ يوجد ملخص باللغة العربية
We present the first detection of gas phase S2H in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed S2H abundance is ~5x10$^{-11}$, only a factor 4-6 lower than that of the widespread H2S molecule. H2S and S2H are efficiently formed on the UV-irradiated icy grain mantles. We performed ice irradiation experiments to determine the H2S and S2H photodesorption yields. The obtained values are ~1.2x10$^{-3}$ and <1x10$^{-5}$ molecules per incident photon for H2S and S2H, respectively. Our upper limit to the S2H photodesorption yield suggests that photo-desorption is not a competitive mechanism to release the S2H molecules to the gas phase. Other desorption mechanisms such as chemical desorption, cosmic-ray desorption and grain shattering can increase the gaseous S2H abundance to some extent. Alternatively, S2H can be formed via gas phase reactions involving gaseous H2S and the abundant ions S+ and SH+. The detection of S2H in this nebula could be therefore the result of the coexistence of an active grain surface chemistry and gaseous photo-chemistry.
Theories of a pre-RNA world suggest that glycolonitrile (HOCH$_2$CN) is a key species in the process of ribonucleotide assembly, which is considered as a molecular precursor of nucleic acids. In this Letter, we report the first detection of this pre-
In recent years, a plethora of high spectral resolution observations of sub-mm and FIR transitions of methylidene (CH), have demonstrated this radical to be a valuable proxy for H2, that can be used for characterising molecular gas within the interst
We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0
Deuterium fractionation processes in the interstellar medium (ISM) have been shown to be highly efficient in the family of nitrogen hydrides. To date, observations were limited to ammonia (NH$_2$D, NHD$_2$, ND$_3$) and imidogen radical (ND) isotopolo
We report the first detection of C$_2$ $A^1Pi_u$--$X^1Sigma_g^+$ (0,0) and CN $A^2Pi_u$--$X^2Sigma^+$ (0,0) absorption bands in the interstellar medium. The detection was made using the near-infrared (0.91--1.35 $mu$m) high-resolution ($R=20,000$ and